
Characteristics

- Nominal pressure PN 16
- Regulating capability $\frac{k_{VS}}{k_{VR}} > 25$
- Single seated, balanced
- · Quadratic characteristic

Applications

Control valves type L1SB are designed for regulation of hot water, steam and lubricating liquids.

The valves are installed combined with our self-acting thermostats, pressure differential regulators or electric valve actuators for regulation in central heating plants, industrial plants, industrial processes or marine installations.

Design

The valve components - spindle, seats and cone - are made of stainless steel. The valve body is made of gun metal RG 5

The thread for the actuator connection is G1B ISO 228. The valve is single seated, balanced. The leakage rate is less than 0.05% of the full flow (according to VDI/VDE 2174).

Quality assurance

All valves are manufactured under an ISO 9001 certification, and are pressure and leakage tested before shipment.

Without the actuator being connected, the valve is held in open position by means of a spring. With pressure on the spindle the valve will close.

In connection with our thermostats the valves will close at rising temperatures. In connection with our electric valve actuators the valves will either close or open depending on the application.

The quadratic characteristic will not cease, until the flow has dropped below 4% of the full flow.

Technical data

Materials:

valve bodycomponentsNominal pressureSeating

Valve characteristic Leakage

Temperature range

Quadratic ≤ 0.05% of k_{vs} See pressure/ temperature

Gun metal RG 5

Stainless steel

Single seated

PN 16

diagram See page 2

Mounting Internal connection threads

ISO 7/1

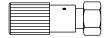
Specifications									
Туре	Connection threads	DN mm	Opening mm	k _{vs} -value m³/h	Lifting height mm	Weight kg			
15 L1SB	Rp ½	15	15	2.75	6	1.0			
20 L1SB	Rp ¾	20	20	5	6.5	1.3			
25 L1SB	Rp 1	25	25	7.5	7	1.6			
32 L1SB	Rp 11/4	32	32	12.5	8	2.9			

Subject to change without notice.

Definition of k_{vs}-value

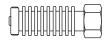
The k_{vs} -value is identical to the IEC flow coefficient k_v and defined as the water flow rate in m³/h through the fully open valve by a constant differential pressure, Δp_v , of 1 bar.

Mounting

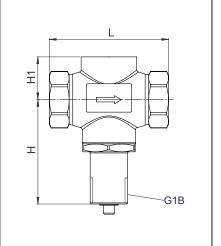

Up to 170°C the valve can be installed vertically as well as horizontally. For media temperature above 170°C, a cooling unit of type KS-4 has to be applied. It must then be installed with electric actuator/ thermostat downwards.

Strainer

It is recommended to use a strainer in front of the control valve if the liquid contains suspended particles.


Accessories

Manual Adjusting Device


The device has a built-in stuffing box. For sealing and manual operation of valves when an actuator has not been fitted, e.g. during periods of construction (max. 170°C).

Cooling Unit KS-4

Cooling unit protecting the stuffing box of the electric actuator/thermostat. To be applied at valve temperatures between 170°C and 250°C.

Dimension sketch

Type	L	Н	H1	
туре	mm	mm	mm	
15 L1SB	85	86	30	
20 L1SB	95	94	35	
25 L1SB	105	92	40	
32 L1SB	138	94	54	

Dimensioning

Type	Water / Steam		Thermostats		Valve actuators	Pressure differential controllers		
Type			V2	V4	VB/VBA	TD66-4	TD66-8	
DN 15	Water:	$\Delta p_L^{}$ & max. $p_1^{}$	bar	9.5	16	16	16	16
	Steam:	$\Delta p_L \& max. p_1$	bar	9				
DN 20	Water:	$\Delta p_L^{}$ & max. $p_1^{}$	bar	9				
	Steam:	$\Delta p_L^{}$ & max. $p_1^{}$	bar	8				
DN 25	Water:	$\Delta p_L^{}$ & max. $p_1^{}$	bar	8				
	Steam:	∆p _L & max. p ₁	bar	7				
DN 32	Water:	$\Delta p_L^{}$ & max. $p_1^{}$	bar	7				
	Steam:	∆p _L & max. p ₁	bar	6				

p₁ = absolute pressure

Subject to change without notice.

